Probability Models

Author
Affiliation

Klinkenberg

University of Amsterdam

Published

September 9, 2024

Why do we need them

Exact approach

Coin values

Lets start simple and throw only 2 times with a fair coin. Assigning 1 for heads and 0 for tails.

The coin can only have the values 0, 1, heads or tails.

Permutation

If we throw 2 times we have the following possible outcomes.

  Toss1 Toss2
1     0     0
2     1     0
3     0     1
4     1     1

Number of heads

With frequency of heads being

  Toss1 Toss2 frequency
1     0     0         0
2     1     0         1
3     0     1         1
4     1     1         2

Probabilities

For each coin toss, disregarding the outcom, there is a .5 probability of landing heads.

  Toss1 Toss2
1   0.5   0.5
2   0.5   0.5
3   0.5   0.5
4   0.5   0.5

So for each we can specify the total probability by applying the product rule (e.g. multiplying the probabilities)

  Toss1 Toss2 probability
1   0.5   0.5        0.25
2   0.5   0.5        0.25
3   0.5   0.5        0.25
4   0.5   0.5        0.25

Which is the same for all outcomes.

Discrete probabilities

Though some outcomes occurs more often. Throwing 0 times heads, only occurs once and hence has a probability of .25. But throwing 1 times heads, can occur in two situations. So, for this situation we can add up the probabilities.

  Toss1 Toss2 frequency probability
1     0     0         0        0.25
2     1     0         1        0.25
3     0     1         1        0.25
4     1     1         2        0.25

Frequecy and probability distribution

10 tosses

Toss1 Toss2 Toss3 Toss4 Toss5 Toss6 Toss7 Toss8 Toss9 Toss10
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Toss1 Toss2 Toss3 Toss4 Toss5 Toss6 Toss7 Toss8 Toss9 Toss10 probability
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
#Heads frequencies Probabilities
0 1 0.0009766
1 10 0.0097656
2 45 0.0439453
3 120 0.1171875
4 210 0.2050781
5 252 0.2460938
6 210 0.2050781
7 120 0.1171875
8 45 0.0439453
9 10 0.0097656
10 1 0.0009766

Binomial distribution

Calculate binomial probabilities

\[ {n\choose k}p^k(1-p)^{n-k}, \small {n\choose k} = \frac{n!}{k!(n-k)!} \]

n = 10   # Sample size
k = 0:10 # Discrete probability space
p = .5   # Probability of head
n k p n! k! (n-k)! (n over k) p^k (1-p)^(n-k) Binom Prob
10 0 0.5 3628800 1 3628800 1 1.0000000 0.0009766 0.0009766
10 1 0.5 3628800 1 362880 10 0.5000000 0.0019531 0.0097656
10 2 0.5 3628800 2 40320 45 0.2500000 0.0039063 0.0439453
10 3 0.5 3628800 6 5040 120 0.1250000 0.0078125 0.1171875
10 4 0.5 3628800 24 720 210 0.0625000 0.0156250 0.2050781
10 5 0.5 3628800 120 120 252 0.0312500 0.0312500 0.2460938
10 6 0.5 3628800 720 24 210 0.0156250 0.0625000 0.2050781
10 7 0.5 3628800 5040 6 120 0.0078125 0.1250000 0.1171875
10 8 0.5 3628800 40320 2 45 0.0039063 0.2500000 0.0439453
10 9 0.5 3628800 362880 1 10 0.0019531 0.5000000 0.0097656
10 10 0.5 3628800 3628800 1 1 0.0009766 1.0000000 0.0009766
Warning

Formula not exam material

Bootstrapping

Sampling from your sample to approximate the sampling distribution.

My Coin tosses

my.tosses = c(1,0,0,0,0,1,0,0,0,0)

Sample from the sample

Sampling with replacement

sample(my.tosses, replace = TRUE)
 [1] 0 0 0 1 0 1 0 0 1 0
sample(my.tosses, replace = TRUE)
 [1] 0 1 1 0 0 1 0 0 0 1
sample(my.tosses, replace = TRUE)
 [1] 0 0 0 0 0 0 0 0 0 1
sample(my.tosses, replace = TRUE)
 [1] 0 0 0 0 0 0 0 0 0 0

Sampling from the sample

n.samples = 1000
n.heads = vector()

for (i in 1:n.samples) {
  my.sample <- sample(my.tosses, replace = TRUE)
  
  n.heads[i] <- sum(my.sample) 
}
1 0 1 0 2 0 1 1 1 1 2 1 0 3 0 3 1 2 3 3 4 1 5 0 2 1 1 2 4 2 0 1 1 3 2 4 1 2 2 2
1 0 1 2 2 2 1 2 1 3 0 3 3 1 3 1 0 0 0 2 0 1 3 5 0 2 0 4 2 1 0 1 5 2 3 1 3 3 1 1
4 2 1 0 1 0 2 0 3 3 4 3 3 2 1 1 3 1 3 3 3 2 2 2 0 0 3 2 3 2 2 2 2 1 2 3 5 2 2 2
3 3 3 5 1 4 2 3 1 2 2 4 1 3 2 1 5 2 1 1 1 4 1 3 1 5 0 1 3 2 2 1 2 1 2 0 0 2 2 2
2 4 2 4 3 1 2 2 0 2 1 1 0 3 3 2 3 3 3 2 2 1 1 1 0 1 0 3 1 1 3 1 3 3 3 0 3 3 2 0
0 2 3 0 1 0 0 2 2 2 1 2 1 0 2 1 2 1 2 1 3 4 4 3 2 3 2 4 1 2 1 1 2 1 1 3 2 1 2 0
3 2 2 2 2 5 3 2 3 2 4 0 1 2 3 1 4 0 2 1 3 1 1 3 2 2 1 4 0 2 0 2 2 1 0 4 5 1 1 3
1 2 1 2 3 2 5 2 2 3 1 3 4 3 2 0 2 2 3 1 1 2 2 1 2 5 0 3 2 5 3 4 1 3 0 0 3 3 2 2
0 1 2 2 1 0 2 2 2 2 2 1 2 2 1 2 4 0 2 2 3 1 1 1 1 2 2 1 2 2 1 1 2 3 1 2 3 2 2 2
2 2 1 2 5 1 2 1 1 2 2 2 2 4 1 1 2 2 3 1 4 6 3 1 2 2 3 0 1 2 2 2 2 2 1 2 4 2 4 2
6 3 2 3 2 0 2 1 1 1 3 3 2 3 8 6 6 4 2 1 2 1 1 1 1 2 2 2 1 2 7 3 0 2 3 1 2 1 4 2
3 1 4 2 2 3 1 2 1 1 3 2 2 1 0 2 1 1 3 5 2 0 1 2 3 3 2 4 3 1 1 1 1 4 0 2 2 2 3 3
1 7 1 2 3 2 3 1 3 3 1 1 3 4 1 2 2 1 3 3 2 2 1 1 3 4 1 5 3 3 4 2 2 1 2 3 2 2 2 2
2 2 0 0 1 1 4 2 1 4 3 3 2 2 1 1 2 3 2 3 4 4 2 1 1 2 0 0 2 2 4 2 3 2 1 2 1 1 2 2
2 2 1 0 2 0 3 1 2 1 4 1 1 3 2 3 0 1 0 1 3 3 3 3 3 1 0 4 1 2 3 1 4 2 1 3 2 2 4 3
4 1 2 1 0 0 2 4 4 3 1 4 1 4 1 1 3 4 2 4 2 1 3 2 2 1 0 0 1 1 4 4 1 1 0 3 4 1 0 3
0 0 2 0 2 2 1 4 4 3 2 3 3 3 2 4 0 4 3 6 2 6 2 1 1 2 2 4 1 1 1 2 2 1 1 1 4 0 1 0
2 3 3 2 2 2 3 2 2 1 4 1 1 0 3 3 1 2 2 2 3 3 1 3 2 1 3 1 2 2 2 3 0 4 2 1 2 1 2 3
3 2 0 1 1 0 3 1 2 1 1 0 4 1 1 2 3 3 6 1 2 3 1 3 1 2 3 1 1 3 3 0 0 1 3 2 0 2 3 3
3 2 4 3 0 2 1 2 1 2 0 1 1 5 0 1 3 5 2 3 4 0 1 3 2 1 2 1 3 0 0 1 6 2 4 4 0 2 3 2
3 4 2 2 1 0 1 2 1 4 1 0 2 1 4 2 2 3 1 3 2 2 3 2 1 1 3 3 2 0 3 1 1 2 2 4 1 2 2 1
1 1 1 1 0 2 4 1 3 2 1 3 1 3 5 2 2 1 1 3 3 3 2 2 5 1 3 3 5 1 2 6 3 4 1 1 2 2 5 3
1 3 1 0 2 3 0 4 2 2 2 1 3 5 1 3 1 3 2 2 1 0 2 1 2 4 2 2 1 0 2 2 2 0 2 1 3 1 4 2
3 3 1 3 4 2 1 3 3 4 4 2 5 1 3 3 0 2 1 4 0 2 0 5 3 2 4 1 4 3 2 3 4 2 1 1 1 4 3 3
0 5 1 2 1 1 4 2 0 2 0 3 1 3 1 3 5 2 2 2 0 0 1 2 1 3 1 5 3 2 1 2 1 2 1 0 3 1 1 2

Frequencies

Frequencies for number of heads per sample.

0 1 2 3 4 5 6 7 8 9 10
Freq 108 269 305 196 83 27 9 2 1 0 0

Bootstrapped sampling distribution

Theoretical Approximations

Continuous Probability distirbutions

For all continuous probability distributions:

  • Total area is always 1
  • The probability of one specific test statistic is 0
  • x-axis represents the test statistic
  • y-axis represents the probability density

T-distribution

Gosset

William Sealy Gosset (aka Student) in 1908 (age 32)

In probability and statistics, Student’s t-distribution (or simply the t-distribution) is any member of a family of continuous probability distributions that arises when estimating the mean of a normally distributed population in situations where the sample size is small and population standard deviation is unknown.

In the English-language literature it takes its name from William Sealy Gosset’s 1908 paper in Biometrika under the pseudonym “Student”. Gosset worked at the Guinness Brewery in Dublin, Ireland, and was interested in the problems of small samples, for example the chemical properties of barley where sample sizes might be as low as 3 (Wikipedia, 2024).

Population distribution

layout(matrix(c(2:6,1,1,7:8,1,1,9:13), 4, 4))

n  = 56    # Sample size
df = n - 1 # Degrees of freedom

mu    = 120
sigma = 15

IQ = seq(mu-45, mu+45, 1)

par(mar=c(4,2,2,0))  
plot(IQ, dnorm(IQ, mean = mu, sd = sigma), type='l', col="red", main = "Population Distribution")

n.samples = 12

for(i in 1:n.samples) {
  
  par(mar=c(2,2,2,0))  
  hist(rnorm(n, mu, sigma), main="Sample Distribution", cex.axis=.5, col="beige", cex.main = .75)
  
}

One sample

Let’s take a larger sample from our normal population.

x = rnorm(n, mu, sigma); x
 [1]  97.06428 114.31771 103.64482 140.67038 128.99539 117.87526 111.73642
 [8] 105.48477 106.31656 129.45169 125.08566 101.88818 115.08274 104.44234
[15] 122.49280 108.79976 127.81236 107.16964 127.74160 110.83698 113.79568
[22] 109.32256 124.79154 129.53559 121.57500 108.01930 136.10072 124.34897
[29] 103.89350 130.34960  97.45505 118.56125 122.91603 106.65062 118.39349
[36] 154.17325 131.21718 117.53183 148.10957 136.79388 121.68563 125.09256
[43] 107.17690 119.11510 132.22669 101.97368 131.40654  75.32125 146.37583
[50] 130.65990 109.58043 130.64950 133.73613 126.37083 107.72237  97.71106

More samples

let’s take more samples.

n.samples     = 1000
mean.x.values = vector()
sd.x.values   = vector()
se.x.values   = vector()

for(i in 1:n.samples) {
  x = rnorm(n, mu, sigma)
  mean.x.values[i] = mean(x)
  se.x.values[i]   = (sd(x) / sqrt(n))
  sd.x.values[i]   = sd(x)
}

Mean and SE for all samples

mean.x.values se.x.values
118.7716 2.134338
120.4047 1.712772
119.8567 1.822675
119.0746 1.986970
117.9119 2.144666
121.2183 1.804641

Sampling distribution

of the mean

T-statistic

\[T_{n-1} = \frac{\bar{x}-\mu}{SE_x} = \frac{\bar{x}-\mu}{s_x / \sqrt{n}}\]

So the t-statistic represents the deviation of the sample mean \(\bar{x}\) from the population mean \(\mu\), considering the sample size, expressed as the degrees of freedom \(df = n - 1\)

T-value

\[T_{n-1} = \frac{\bar{x}-\mu}{SE_x} = \frac{\bar{x}-\mu}{s_x / \sqrt{n}}\]

t = (mean(x) - mu) / (sd(x) / sqrt(n))
t
[1] 1.509039

Calculate t-values

\[T_{n-1} = \frac{\bar{x}-\mu}{SE_x} = \frac{\bar{x}-\mu}{s_x / \sqrt{n}}\]

t.values = (mean.x.values - mu) / se.x.values
        mean.x.values  mu se.x.values    t.values
 [995,]      119.9388 120    2.490080 -0.02456887
 [996,]      124.0480 120    1.996019  2.02802302
 [997,]      118.1232 120    2.214038 -0.84766424
 [998,]      120.4651 120    1.882545  0.24704776
 [999,]      118.7644 120    1.976912 -0.62499384
[1000,]      123.1174 120    2.065799  1.50903941

Sampling distribution t-values

The t-distribution approximates the sampling distribution, hence the name theoretical approximation.

T-distribution

So if the population is normaly distributed (assumption of normality) the t-distribution represents the deviation of sample means from the population mean (\(\mu\)), given a certain sample size (\(df = n - 1\)).

The t-distibution therefore is different for different sample sizes and converges to a standard normal distribution if sample size is large enough.

The t-distribution is defined by the probability density function (PDF):

\[\textstyle\frac{\Gamma \left(\frac{\nu+1}{2} \right)} {\sqrt{\nu\pi}\,\Gamma \left(\frac{\nu}{2} \right)} \left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}\!\]

where \(\nu\) is the number of degrees of freedom and \(\Gamma\) is the gamma function (Wikipedia, 2024).

Warning

Formula not exam material

End

Contact

CC BY-NC-SA 4.0

CC BY-NC-SA 4.0

References

Wikipedia. (2024). Student’s t-distributionWikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Student's%20t-distribution&oldid=1202978121.
  • Distribution illustration generated with DALL-E by OpenAI