Probability Models

Author
Affiliation

Klinkenberg

University of Amsterdam

Published

February 12, 2024

Exact approach

Coin values

Lets start simple and throw only 2 times with a fair coin. Assigning 1 for heads and 0 for tails.

The coin can only have the values 0, 1, heads or tails.

Permutation

If we throw 2 times we have the following possible outcomes.

  Toss1 Toss2
1     0     0
2     1     0
3     0     1
4     1     1

Number of heads

With frequency of heads being

  Toss1 Toss2 frequency
1     0     0         0
2     1     0         1
3     0     1         1
4     1     1         2

Probabilities

For each coin toss, disregarding the outcom, there is a .5 probability of landing heads.

  Toss1 Toss2
1   0.5   0.5
2   0.5   0.5
3   0.5   0.5
4   0.5   0.5

So for each we can specify the total probability by applying the product rule (e.g. multiplying the probabilities)

  Toss1 Toss2 probability
1   0.5   0.5        0.25
2   0.5   0.5        0.25
3   0.5   0.5        0.25
4   0.5   0.5        0.25

Which is the same for all outcomes.

Discrete probabilities

Though some outcomes occurs more often. Throwing 0 times heads, only occurs once and hence has a probability of .25. But throwing 1 times heads, can occur in two situations. So, for this situation we can add up the probabilities.

  Toss1 Toss2 frequency probability
1     0     0         0        0.25
2     1     0         1        0.25
3     0     1         1        0.25
4     1     1         2        0.25

Frequecy and probability distribution

10 tosses

Toss1 Toss2 Toss3 Toss4 Toss5 Toss6 Toss7 Toss8 Toss9 Toss10
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Toss1 Toss2 Toss3 Toss4 Toss5 Toss6 Toss7 Toss8 Toss9 Toss10 probability
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0009766
#Heads frequencies Probabilities
0 1 0.0009766
1 10 0.0097656
2 45 0.0439453
3 120 0.1171875
4 210 0.2050781
5 252 0.2460938
6 210 0.2050781
7 120 0.1171875
8 45 0.0439453
9 10 0.0097656
10 1 0.0009766

Binomial distribution

Calculate binomial probabilities

\[ {n\choose k}p^k(1-p)^{n-k}, \small {n\choose k} = \frac{n!}{k!(n-k)!} \]

n = 10   # Sample size
k = 0:10 # Discrete probability space
p = .5   # Probability of head
n k p n! k! (n-k)! (n over k) p^k (1-p)^(n-k) Binom Prob
10 0 0.5 3628800 1 3628800 1 1.0000000 0.0009766 0.0009766
10 1 0.5 3628800 1 362880 10 0.5000000 0.0019531 0.0097656
10 2 0.5 3628800 2 40320 45 0.2500000 0.0039063 0.0439453
10 3 0.5 3628800 6 5040 120 0.1250000 0.0078125 0.1171875
10 4 0.5 3628800 24 720 210 0.0625000 0.0156250 0.2050781
10 5 0.5 3628800 120 120 252 0.0312500 0.0312500 0.2460938
10 6 0.5 3628800 720 24 210 0.0156250 0.0625000 0.2050781
10 7 0.5 3628800 5040 6 120 0.0078125 0.1250000 0.1171875
10 8 0.5 3628800 40320 2 45 0.0039063 0.2500000 0.0439453
10 9 0.5 3628800 362880 1 10 0.0019531 0.5000000 0.0097656
10 10 0.5 3628800 3628800 1 1 0.0009766 1.0000000 0.0009766

Bootstrapping

Sampling from your sample to approximate the sampling distribution.

My Coin tosses

my.tosses = c(0,1,0,1,0,0,0,0,0,0)

Sample from the sample

Sampling with replacement

sample(my.tosses, replace = TRUE)
 [1] 0 1 0 0 0 0 1 0 0 0
sample(my.tosses, replace = TRUE)
 [1] 0 1 0 0 0 0 0 0 0 0
sample(my.tosses, replace = TRUE)
 [1] 0 0 0 1 1 0 0 0 1 0
sample(my.tosses, replace = TRUE)
 [1] 0 0 1 1 1 1 0 0 0 0

Sampling from the sample

n.samples = 1000
n.heads = vector()

for (i in 1:n.samples) {
  my.sample <- sample(my.tosses, replace = TRUE)
  
  n.heads[i] <- sum(my.sample) 
}
1 2 1 1 2 2 3 0 2 1 3 6 4 1 5 1 0 2 2 3 2 4 1 1 2 2 2 1 3 2 3 1 1 3 1 3 3 2 2 2
2 3 2 3 2 2 2 2 2 0 1 0 3 5 2 2 4 3 1 1 3 4 4 5 3 1 0 1 2 1 4 5 2 2 1 0 1 1 3 3
0 1 3 3 2 1 2 2 1 3 1 1 2 3 1 1 2 2 0 2 3 2 4 2 3 0 3 4 2 2 2 4 2 1 0 2 1 3 0 1
3 2 2 1 0 1 2 6 4 2 3 2 3 3 3 1 4 0 2 2 3 3 3 3 2 2 1 1 2 4 3 1 0 0 5 4 5 0 2 1
3 2 0 3 3 4 1 2 4 3 3 0 0 3 4 2 2 1 2 3 2 0 1 1 2 1 1 0 3 3 1 3 3 2 2 6 1 3 1 1
2 2 1 2 1 1 1 0 1 2 1 5 2 3 0 2 2 2 1 3 0 3 3 4 5 1 3 2 1 6 2 0 2 4 6 2 2 3 4 2
4 3 0 4 1 1 1 2 1 2 2 1 4 5 2 1 3 1 1 1 5 0 2 1 3 3 2 1 3 1 5 0 4 2 2 3 2 2 1 4
0 0 3 2 3 0 3 1 3 2 3 2 4 3 0 3 3 0 1 0 4 1 3 1 2 2 3 2 3 1 2 2 1 3 5 3 2 0 0 0
1 3 2 2 2 1 5 1 2 1 6 1 0 2 2 4 2 2 2 3 2 2 4 3 1 1 5 2 1 4 3 3 1 0 2 1 3 2 2 4
2 3 2 0 1 2 2 3 0 2 3 1 2 1 1 1 2 2 3 4 1 4 0 0 1 2 2 2 1 2 4 5 1 2 3 3 1 1 5 2
4 2 3 3 1 3 2 2 1 2 3 0 5 3 2 2 2 0 1 3 1 2 2 2 1 2 2 0 1 3 3 3 3 2 1 5 1 3 2 2
1 0 1 0 3 1 2 2 2 4 2 2 0 3 3 1 4 3 0 3 1 1 0 2 2 1 0 1 3 3 1 2 1 2 1 2 1 1 3 2
2 3 3 2 2 0 2 2 2 2 1 2 2 3 2 1 2 2 2 2 2 1 3 1 3 2 2 2 1 3 3 1 2 3 1 2 1 2 2 2
1 1 2 1 2 0 2 3 0 2 1 3 0 3 4 4 3 2 2 3 1 2 4 1 5 2 3 3 0 2 1 1 2 1 1 0 2 3 3 6
2 2 1 1 1 0 2 5 3 1 3 2 4 5 0 1 2 2 0 3 2 2 0 3 2 2 2 1 2 2 2 1 1 3 1 4 2 0 3 3
1 3 3 1 1 1 2 3 2 0 1 1 2 1 1 2 3 0 1 2 4 4 0 2 1 1 2 2 2 6 1 3 1 5 3 4 3 4 2 0
5 3 2 4 3 4 5 2 2 4 1 2 1 1 2 1 1 1 2 0 3 3 1 2 3 4 1 3 4 2 1 2 2 2 4 1 2 3 3 2
2 0 1 2 2 0 3 2 3 1 2 0 1 1 2 3 3 1 3 1 1 2 0 5 4 1 2 3 1 1 1 2 2 4 4 1 1 2 0 1
2 3 0 4 4 1 3 2 3 4 2 1 2 3 0 3 2 4 1 4 2 2 1 1 3 2 5 3 4 2 1 2 5 2 4 4 1 4 3 3
1 3 3 1 2 0 1 2 2 2 4 6 2 2 1 0 3 3 5 3 2 6 4 1 3 1 2 1 1 1 4 2 2 1 0 3 2 3 1 1
2 2 0 2 4 1 2 1 2 2 3 3 1 2 3 4 1 1 3 2 3 1 2 2 2 2 1 0 1 3 2 1 3 2 1 0 3 1 1 2
2 2 5 1 0 3 0 3 2 3 1 4 1 1 4 1 1 4 1 1 2 3 0 2 2 0 0 3 2 0 1 2 1 2 2 1 0 2 1 5
1 1 3 2 2 2 2 4 1 1 0 0 1 2 5 3 2 2 1 1 1 3 0 1 2 2 3 4 3 3 1 4 3 3 1 5 1 3 0 1
1 1 1 2 3 1 4 2 1 3 1 3 2 2 2 4 5 3 3 2 1 2 1 3 1 2 2 4 1 4 2 1 4 4 3 2 1 2 5 2
1 3 2 3 2 3 4 2 1 3 1 1 2 2 3 4 0 2 1 3 1 1 2 3 1 1 2 4 1 2 2 1 3 1 5 2 2 1 2 2

Frequencies

Frequencies for number of heads per sample.

0 1 2 3 4 5 6 7 8 9 10
Freq 93 263 315 201 83 35 10 0 0 0 0

Bootstrapped sampling distribution

Theoretical Approximations

Continuous Probability distirbutions

For all continuous probability distributions:

  • Total area is always 1
  • The probability of one specific test statistic is 0
  • x-axis represents the test statistic
  • y-axis represents the probability density

T-distribution

Gosset

William Sealy Gosset (aka Student) in 1908 (age 32)

In probability and statistics, Student’s t-distribution (or simply the t-distribution) is any member of a family of continuous probability distributions that arises when estimating the mean of a normally distributed population in situations where the sample size is small and population standard deviation is unknown.

In the English-language literature it takes its name from William Sealy Gosset’s 1908 paper in Biometrika under the pseudonym “Student”. Gosset worked at the Guinness Brewery in Dublin, Ireland, and was interested in the problems of small samples, for example the chemical properties of barley where sample sizes might be as low as 3 (Wikipedia, 2024).

Population distribution

layout(matrix(c(2:6,1,1,7:8,1,1,9:13), 4, 4))

n  = 56    # Sample size
df = n - 1 # Degrees of freedom

mu    = 120
sigma = 15

IQ = seq(mu-45, mu+45, 1)

par(mar=c(4,2,2,0))  
plot(IQ, dnorm(IQ, mean = mu, sd = sigma), type='l', col="red", main = "Population Distribution")

n.samples = 12

for(i in 1:n.samples) {
  
  par(mar=c(2,2,2,0))  
  hist(rnorm(n, mu, sigma), main="Sample Distribution", cex.axis=.5, col="beige", cex.main = .75)
  
}

One sample

Let’s take a larger sample from our normal population.

x = rnorm(n, mu, sigma); x
 [1] 107.17927 130.80676 127.94839 141.33349 122.89934  77.66882 116.82787
 [8] 133.02924 109.97133 133.56940 122.49528 118.55665 116.11118 110.04206
[15] 113.68917 133.01632 131.32582 121.12561 110.81535 112.13214 112.34638
[22] 124.44749 161.89195 127.07004 102.62866  96.62265 131.26846 117.60728
[29] 136.09720 135.64733 106.29816 116.99422 109.27281 110.40999 109.66679
[36] 123.89073 144.38404 109.68744 118.86466 113.77315 116.06298 133.47985
[43]  95.53884 124.39871 118.32193 123.64072 113.10669  84.83373 129.23723
[50]  86.26019 121.81305 138.04168 119.12822 113.19637 117.03577 141.52632

More samples

let’s take more samples.

n.samples     = 1000
mean.x.values = vector()
sd.x.values   = vector()
se.x.values   = vector()

for(i in 1:n.samples) {
  x = rnorm(n, mu, sigma)
  mean.x.values[i] = mean(x)
  se.x.values[i]   = (sd(x) / sqrt(n))
  sd.x.values[i]   = sd(x)
}

Mean and SE for all samples

mean.x.values se.x.values
122.0378 2.178401
118.2087 2.046157
117.3111 1.852351
117.3727 1.862840
116.0319 1.867772
119.0341 2.270794

Sampling distribution

of the mean

T-statistic

\[T_{n-1} = \frac{\bar{x}-\mu}{SE_x} = \frac{\bar{x}-\mu}{s_x / \sqrt{n}}\]

So the t-statistic represents the deviation of the sample mean \(\bar{x}\) from the population mean \(\mu\), considering the sample size, expressed as the degrees of freedom \(df = n - 1\)

T-value

\[T_{n-1} = \frac{\bar{x}-\mu}{SE_x} = \frac{\bar{x}-\mu}{s_x / \sqrt{n}}\]

t = (mean(x) - mu) / (sd(x) / sqrt(n))
t
[1] 0.2487238

Calculate t-values

\[T_{n-1} = \frac{\bar{x}-\mu}{SE_x} = \frac{\bar{x}-\mu}{s_x / \sqrt{n}}\]

t.values = (mean.x.values - mu) / se.x.values
        mean.x.values  mu se.x.values    t.values
 [995,]      115.9547 120    2.399117 -1.68616959
 [996,]      119.8866 120    2.061135 -0.05503363
 [997,]      118.7975 120    2.141113 -0.56164382
 [998,]      120.4509 120    1.986195  0.22703385
 [999,]      118.1819 120    2.337895 -0.77765053
[1000,]      120.4615 120    1.855412  0.24872380

Sampling distribution t-values

T-distribution

So if the population is normaly distributed (assumption of normality) the t-distribution represents the deviation of sample means from the population mean (\(\mu\)), given a certain sample size (\(df = n - 1\)).

The t-distibution therefore is different for different sample sizes and converges to a standard normal distribution if sample size is large enough.

The t-distribution is defined by the probability density function (PDF):

\[\textstyle\frac{\Gamma \left(\frac{\nu+1}{2} \right)} {\sqrt{\nu\pi}\,\Gamma \left(\frac{\nu}{2} \right)} \left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}\!\]

where \(\nu\) is the number of degrees of freedom and \(\Gamma\) is the gamma function (Wikipedia, 2024).

Warning

Formula not exam material

One or two sided

Two sided

  • \(H_A: \bar{x} \neq \mu\)

One sided

  • \(H_A: \bar{x} > \mu\)
  • \(H_A: \bar{x} < \mu\)

End

Contact

CC BY-NC-SA 4.0

References

Wikipedia. (2024). Student’s t-distributionWikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Student's%20t-distribution&oldid=1202978121.