References

Bullock, J. G., & Ha, S. E. (2011). Mediation analysis is harder than it looks. In J. N. Druckman, D. P. Green, J. H. Kuklinski, & A. Lupia (Eds.), Cambridge handbook of experimental political science (pp. 508–522). Cambridge University Press. https://doi.org/10.1017/CBO9780511921452.035
Cohen, J. (1969). Statistical power analysis for the behavioral sciences. San Diego, CA: Academic Press.
Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York: Routledge.
Davis, J. A. (1985). The logic of causal order. Beverly Hills, CA: Sage.
de Groot, A. D. (1969). Methodology: Foundations of Inference and Research in the Behavioral Sciences. The Hague: Mouton.
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann.Statist., 7(1), 1–26.
Efron, Bradley. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185. https://doi.org/10.1080/01621459.1987.10478410
Erdogan, B. Z. (1999). Celebrity endorsement: A literature review. Journal of Marketing Management, 15(4), 291–314.
Fisher, R. A. (1919). The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399–433. https://doi.org/10.1017/S0080456800012163
Fisher, Ronald Aylmer. (1955). Statistical methods and scientific induction. Journal of the Royal Statistical Society.Series B (Methodological), 17(1), 69–78. Retrieved from http://www.jstor.org/stable/2983785
Hainmueller, J., Mummolo, J., & Xu, Y. (2016). How much should we trust estimates from multiplicative interaction models? Simple tools to improve empirical practice. https://doi.org/10.2139/ssrn.2739221
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press.
Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E.-J. (2014). Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21, 1157–1164.
Holbert, R. L., & Park, E. (2019). Conceptualizing, Organizing, and Positing Moderation in Communication Research. Communication Theory. https://doi.org/10.1093/ct/qtz006
Lehmann, E. L. (1993). The fisher, neyman-pearson theories of testing hypotheses: One theory or two? Journal of the American Statistical Association, 88(424), 1242–1249. https://doi.org/10.1080/01621459.1993.10476404
McCracken, G. (1989). Who is the celebrity endorser? Cultural foundations of the endorsement process. Journal of Consumer Research, 16(3), 310–321.
Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, 236(767), 333–380.
O’Keefe, D. J. (2007). Brief report: Post hoc power, observed power, a priori power, retrospective power, prospective power, achieved power: Sorting out appropriate uses of statistical power analyses. Communication Methods and Measures, 1(4), 291–299. https://doi.org/10.1080/19312450701641375
Sawilowsky, S. (2009). New Effect Size Rules of Thumb. Journal of Modern Applied Statistical Methods, 8(2). https://doi.org/10.22237/jmasm/1257035100
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108
Wilkinson, L. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594.